Semigroup formulation of Rothe’s method: application to parabolic problems

نویسنده

  • Marián Slodička
چکیده

A semilinear parabolic equation in a Banach space is considered. The purpose of this paper is to show the dependence of an error estimate for Rothe’s method on the regularity of initial data. The proofs are done using a semigroup theory and Taylor spectral representation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Rothe’s Method for Fully Nonlinear Parabolic Equations

Convergence of Rothe’s method for the fully nonlinear parabolic equation ut +F (D 2u,Du, u, x, t) = 0 is considered under some continuity assumptions on F. We show that the Rothe solutions are Lipschitz in time, and they solve the equation in the viscosity sense. As an immediate corollary we get Lipschitz behavior in time of the viscosity solutions of our equation.

متن کامل

Semilinear parabolic partial differential equations—theory, approximation, and application

We present an abstract framework for semilinear parabolic problems based on analytic semigroup theory. The same framework is used for numerical discretization based on the finite element method. We prove local existence of solutions and local error estimates. These are applied in the context of dynamical systems. The framework is also used to analyze the finite element method for a stochastic p...

متن کامل

A Method of Verified Computations for Solutions to Semilinear Parabolic Equations Using Semigroup Theory

This paper presents a numerical method for verifying the existence and local uniqueness of a solution for an initial-boundary value problem of semilinear parabolic equations. The main theorem of this paper provides a sufficient condition for a unique solution to be enclosed within a neighborhood of a numerical solution. In the formulation used in this paper, the initial-boundary value problem i...

متن کامل

Nonsmooth Data Error Estimates with Applications to the Study of the Long-time Behavior of Finite Element Solutions of Semilinear Parabolic Problems

A rather general semilinear parabolic problem is studied together with its spatially semidiscrete nite element approximation. Both problems are formulated within the framework of nonlinear semigroups in the Sobolev space H 1 ((). The main result is an error estimate for solutions with initial data in H 1 ((), valid during an arbitrary nite time interval. The proof is based on the semigroup form...

متن کامل

کاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان

With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010